

INTRODUCTION TO THE CDIO APPROACH TO ENGINEERING EDUCATION

MOTIVES, IMPLEMENTATION AND EFFECTS ON EDUCATIONAL QUALITY

Prof Johan Malmqvist

Dean of Education, Co-director of the CDIO Initiative Chalmers University of Technology Gothenburg, Sweden

March 13, 2017

OUTLINE

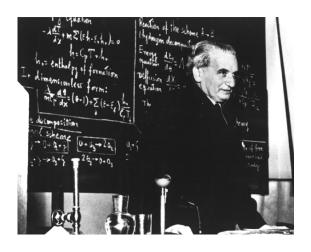
- What is CDIO?
- Case: CDIO in Chalmers' mechanical engineering
 programme
- Impact of CDIO implementation on educational quality

• An <u>idea</u> of what engineering students should learn and how: To become "Engineers who can engineer"

• A <u>methodology</u> for engineering education reform: The CDIO Syllabus and the 12 CDIO Standards

 A <u>community</u>: The CDIO Initiative with 120+ universities as members

<u>WHAT</u> SHOULD ENGINEERING STUDENTS LEARN?


HOW SHOULD THEY LEARN IT?

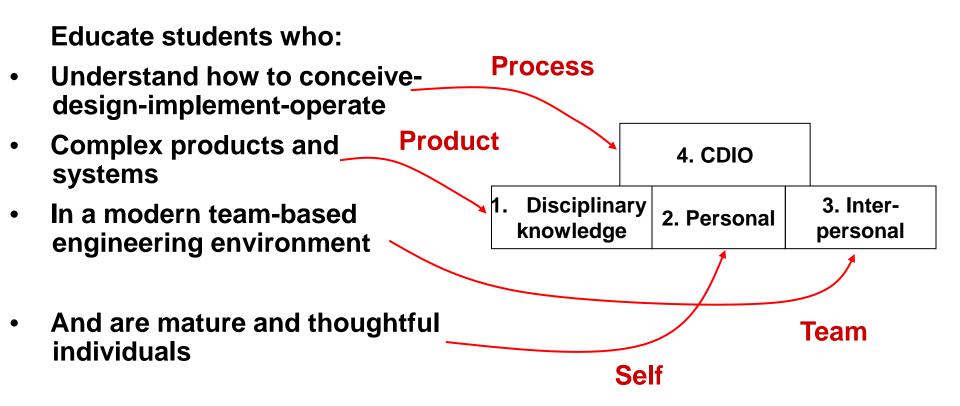
THE PROFESSIONAL ROLE OF ENGINEERS

"Scientists investigate that which already is. Engineers <u>create</u> that which has never been. - Theodore von Karmann

"What you need to invent, is an imagination and a pile of junk" - Thomas Edison

"Engineers <u>Conceive</u>, <u>Design</u>, <u>Implement</u> and <u>Operate</u> complex products and systems in a modern team-based engineering environment"

Lifecycle of a product, process, project, system, software, material


- **Conceive**: customer needs, technology, enterprise strategy, regulations; and conceptual, technical, and business plans
- Design: plans, drawings, and algorithms that describe what will be implemented
- Implement: transformation of the design into the product, process, or system, including manufacturing, coding, testing and validation
- Operate: the implemented product or process delivering the intended value, including maintaining, evolving and retiring the system

Duke University

FROM UNDERLYING NEED TO PROGRAM LEARNING OUTCOMES

The CDIO Syllabus - a comprehensive statement of detailed goals for an engineering education

THE CDIO SYLLABUS 2.0

- A generalized list of competences that an engineer should possess
- Program specific (1) and general (2-4)
- Created and validated by alumni, faculty and students
- A "complete" reference model

Disciplinary Knowledge & Reasoning:

- 1.1 Knowledge of underlying mathematics and sciences
- 1.2 Core engineering fundamental knowledge
- 1.3 Advanced engineering fundamental knowledge, methods and tools

2 Personal and Professional Skills

- 2.1 Analytical reasoning and problem solving
- 2.2 Experimentation, investigation and knowledge discovery
- 2.3 System thinking
- 2.4 Attitudes, thought and learning
- 2.5 Ethics, equity and other responsibilities

3 Interpersonal Skills

- 3.1 Teamwork
- 3.2 Communications
- 3.3 Communication in a foreign language

4 CDIO of Complex Systems

- 4.1 External, societal and environmental context
- 4.2 Enterprise and business context
- 4.3 Conceiving, systems engineering and management
- 4.4 Designing
- 4.5 Implementing
- 4.6 Operating
- 4.7 Leadership
- 4.8 Entrepreneurship

CDIO Syllabus contains 2-3 more layers of detail

An education that stresses the fundamentals, set in the context of Conceiving – Designing – Implementing – Operating systems and products:

- Clear, detailed programme learning outcomes that express a holistic view of engineering
- A curriculum organised around mutually supporting courses, with CDIO activities highly interwoven
- Rich with student design-build projects
- Integrating learning of professional skills such as teamwork and communication
- Featuring active and experiential learning
- Taught by teachers with scientific, engineering and pedagogic competence
- Constantly improved through quality assurance process with higher aims than accreditation

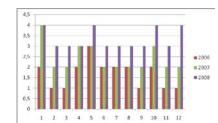
Retask current assets and resources in:

- Curriculum
- Teaching and learning methods
- Design-implement experiences and engineering workspaces
- Learning assessment methods
- Faculty competence
- Program evaluation

A systematic approach is needed to address these issues!

THE CDIO EDUCATION DEVELOPMENT METHODOLOGY

CDIO DEVELOPMENT METHODOLOGY


- CDIO syllabus WHAT
- CDIO standards HOW
- CDIO curriculum design process – from WHAT to HOW
- CDIO standards self-evaluation – HOW WELL

- 1.1 Knowledge of underlying mathematics and sciences 1.2 Core engineering fundamental knowledge 1.3 Advanced engineering fundamental knowledge, methods
- Advanced engineering fundamental knowledge, metho and tools
- 2 Personal and Professional Skills
- 2.1 Analytical reasoning and problem solving 2.2 Experimentation, investigation and knowledge discovery
- 2.2 Experimentation, investigation and knowledge dis 2.3 System thinking
- 2.4 Attitudes, thought and learning
- 2.5 Ethics, equity and other responsibilities
- 3 Interpersonal Skills
- 3.1 Teamwork 3.2 Communications 3.3 Communication in a foreign language
- 4 CD10 of Complex Systems
- 4.1 External, societal and environmental context
- 4.2 Enterprise and business context
- 4.3 Conceiving, systems engineering and management 4.4 Designing
- 4.4 Designing 4.5 Implementing
- 4.6 Operating
- 4.7 Leadership 4.8 Entrepreneurship

THE CDIO CURRICULUM DESIGN PROCESS

1. The Context

Adoption of the principle that product. Process, and system lifecycic development and deployment are the context for engineering education 2. Learning Outcomes Specific, detailed learning outcomes for personal,

interpersonal, and product, process and system building skills, consistent with program goals and validated by program stakeholders 3. Integrated Curriculum

A curriculum designed with mutually supporting disciplinary subjects, with an explicit plan to integrate personal, interpersonal, and product, process, and system building skills

4. Introduction to Engineering

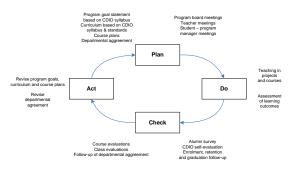
An introductory course that provides the framework for engineering practice in product. Process, and system building, and introduces essential personal and interpersonal skills 5. Design-Implement Experiences

A curriculum that includes two or more design-implement experiences, including one at a basic level and one at an advanced level

 Engineering Workspaces
 Workspaces and laboratories that support and encourage hands-on learning of product, process, and system building disciplinary knowledge, and social learning

Integrated learning experiences that lead to the acquisition of disciplinary knowledge, as well as personal, interpersonal and produc, process,t and system building skills 8. Active Learning

. Integrated Learning Experiences


cdio

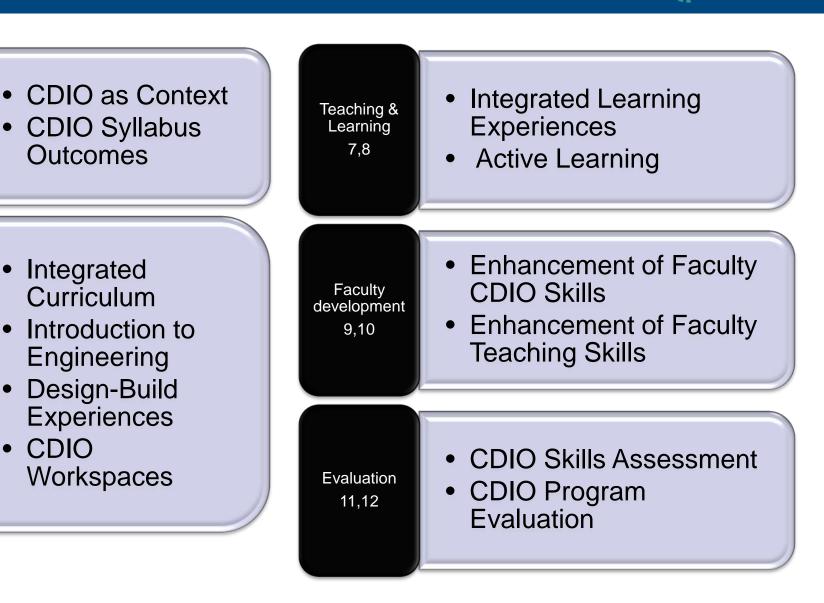
Teaching and learning based on active experiential learning methods

 Enhancement of Faculty Skills Competence Actions that enhance faculty competence in personal, interpersonal, and product and system building skills ID. Enhancement of Faculty Tacabing Competence Actions that enhance faculty competence in providing integrated learning experiences, in using active experiential learning methods, and in assessing student learning 11. Learning Assessment

Assessment of student learning in personal, interpersonal, and product, process, and system building skills, as well as in disciplinary knowledge 12. Program Evaluation

A system that evaluates programs against these 12 standards, and provides feedback to students, faculty, and other stakeholders for the purposes of continuous improvement

THE 12 CDIO STANDARDS – THE GUIDELINES FOR CDIO DEVELOPMENT


Context &

golals 1,2

CDIO

curriculum & spac<u>e</u>

3,4,5,6

cdio

CASE:

MECHANICAL ENGINEERING AT CHALMERS UNIVERSITY OF TECHNOLOGY, SWEDEN

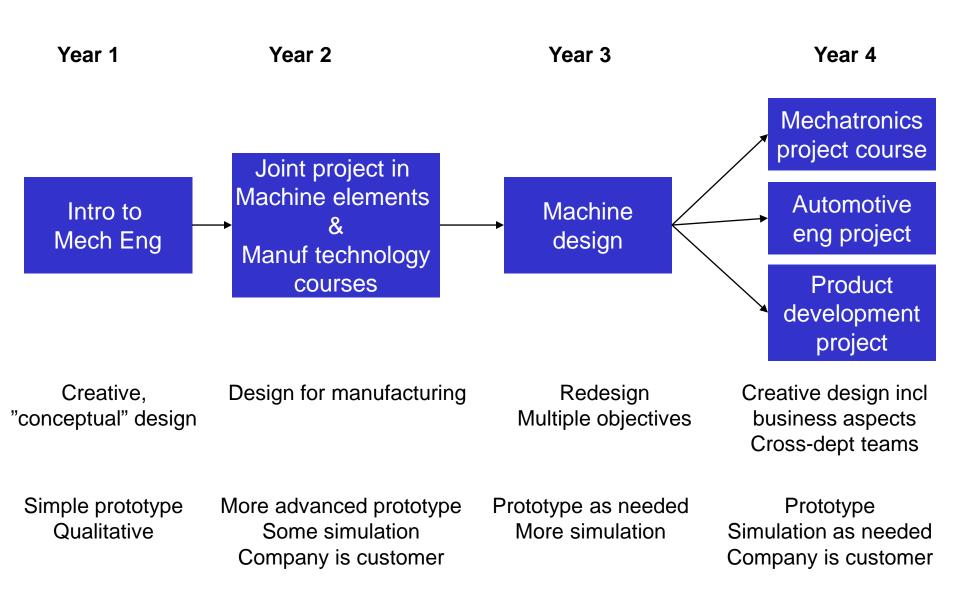
PLANNING THE CHANGE AT CHALMERS cdio

Identify needs & opportunities for change	 Strengths + More Project-based courses Design courses
	 Weaknesses No design-build-test projects, lack of authenticity Employer requested better communication skills, project leadership & initiative + More Poor links between maths and engineering subjects
Establish vision & strategy	CDIO was selected as basis for a program vision & strategy
Identify early successes	4 th year design-build-test competition-based projects were focused (Formula Student, Autonomous vehicles)
Set up system for measuring the change	Self-assessment vs CDIO standards

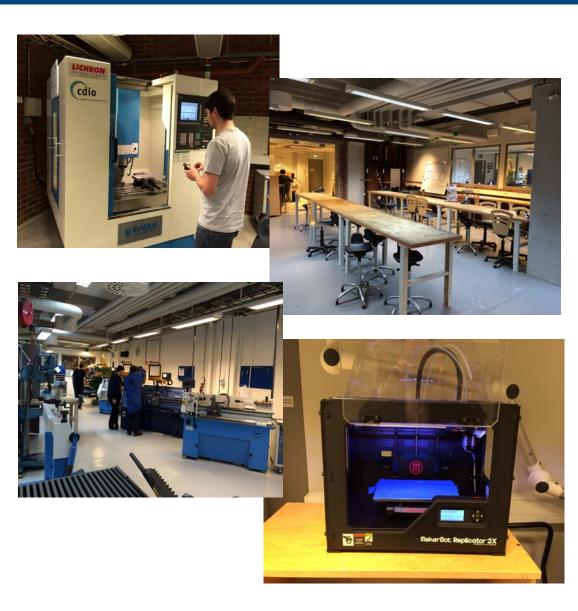
Design-implement experiences are instructional events in which learning occurs through the creation of a <u>product</u>, <u>process</u>, or <u>system</u>

- Train authentic engineering and decision-making
- Provide the natural context in which to teach many CDIO syllabus skills (teamwork, communications, designing, implementing)

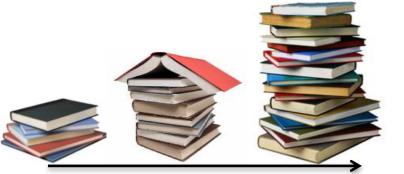
DESIGN-BUILD-TEST PROJECT EXAMPLE cdio


Chalmers Eco-Marathon Vera

A PLANNED LEARNING SEQUENCE FOR DESIGN SKILLS



THE PROTOTYPING LABORATORY


- 450 m2 facility where students can build prototypes
- Metal machining, woodworking, rapid prototyping, waterjet welding, electronics, composites (soon)

 Used in courses and projects from year 1 to master thesis

Integrated learning experiences develop **both** technical knowledge and "generic" skills (communication, teamwork, ethics, sustainability, etc)

Acquisition of technical knowledge

Development of generic skills

Year 1

Intro Mathematics	Single-variable	Linear Algebra	Several-variable
7.5 ECTS	Calculus 7.5 ECTS	7.5 ECTS	Calculus 7.5 ECTS
Program ng in	CAD M hp		Mechai s and Solid
Matlab 4.5 ECTS		Mechanics I	Mechanics II
Intro to Mechanical Eng	7.5 ECTS $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	7.5 ECTS	7.5 ECTS

Common computation labs in mathematics, programming & engineering science

• Communications

Year 2

Mechanics and Solid Mechanics I II	Machine Elements 7.5 ECTS	Integrated Design and Manufacturing Project 7.5 ECTS			
7.5 ECTS	7.5 LC15	7.5 LC15			
Materials	Materials and	Sustainable product	Industri Production		
7.5 ECTS	Manufacturing	development 4.5 E	& Org 🗧 CTS 🗨 🗨		
	Technology	Thermodynamics	Industria Economics		
\bigcirc	7.5 ECTS	7.5 ECTS	4 ECTS		

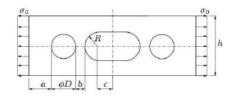
Year 3

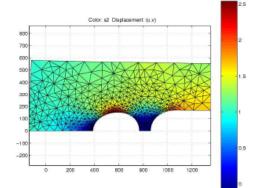
Mechatronics 7.5 ECTS	Control Engineering 7.5 ECTS	Bachelor Thesis Project 15 ECTS			
7.5 EC15	7.5 EC 15				
Fluid Mechanics7.5 ECTS	Elective I 7.5 ECTS	Elective II 7.5 ECTS	Mathematical Statistics 7.5 ECTS		

- Teamwork
- Sustainability
- Ethics

Integrative project in design & manufacturing

REFORMED MATHEMATICS EMPHASIZING SIMULATIONS

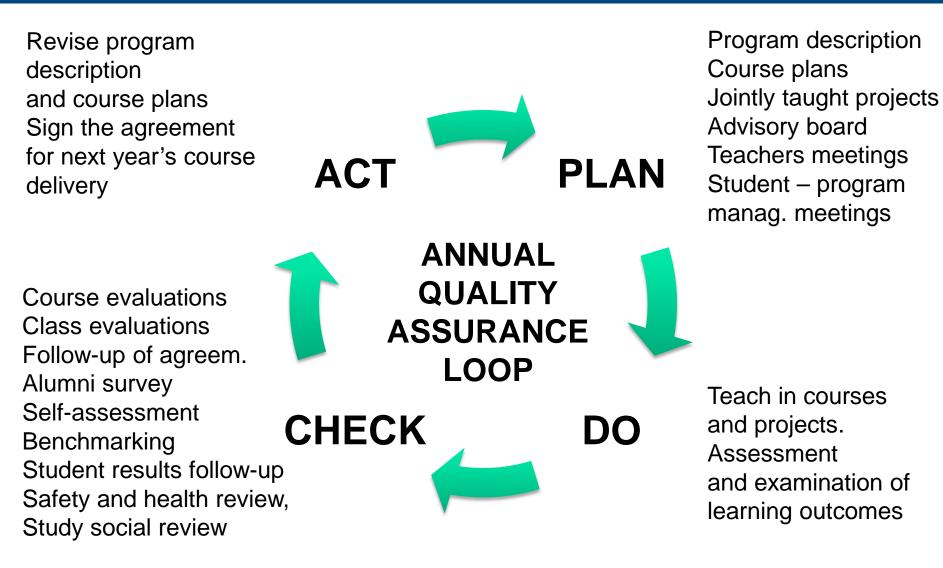

- Motivate importance of mathematics and applied mechanics courses
- Realistic engineering
 problems


Year 1 lab example

Analys av plan elastiska skiva med fyra hål

Beräkna spänningskoncentrationsfaktorn. Avgör om spänningshöjningarna vid hålen samverkar. Symmetrier skall utnyttjas.

- Working method based on modelling, simulation & analysis
- MATLAB programming
- Visualization of mechanical behaviour



A SYSTEM FOR CONTINUOUS IMPROVEMENT

A CULTURE OF CHANGE

Pre CDIO	CDIO planning	CDIO basic design & piloting	CDIO implementation	CDIO +
-2000	2000-2001	2001-2004	2004-2008	2009-2013
 M2000 reform Project courses More design Early eng experiences Master-like profiles No design- build-test 	 Set project goals Concretize CDIO concept Bench- marking Design-build- test pilots 	 Prototyping lab Multiple design-build- test projects Integrated learning 3+2 education structure adapted 	 Mathematics Sustainability Bachelor project English on master level HSV Excellence center 	 Virtual learning environment for math stat Integrated sustainability Material science courses with product focus
				 Set new goals

• Visiting committee

CURRENT FOCUS

- Entrepreneurship for the few and for the many
- New technologies
- Preparing for global collaboration and competition
- Ethics
- Blended learning
- Challenge-based learning experiences
- Composites fabrication

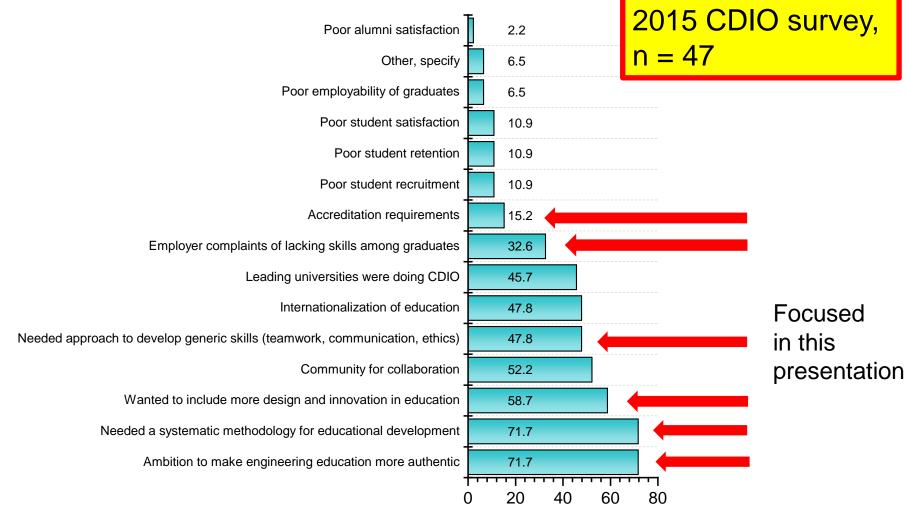
SOME RECOGNITION

The ME programme was evaluated as *very high quality* in the 2013 Swedish national evaluation

Engineering programme of the year 2012, Swedish Industry Association

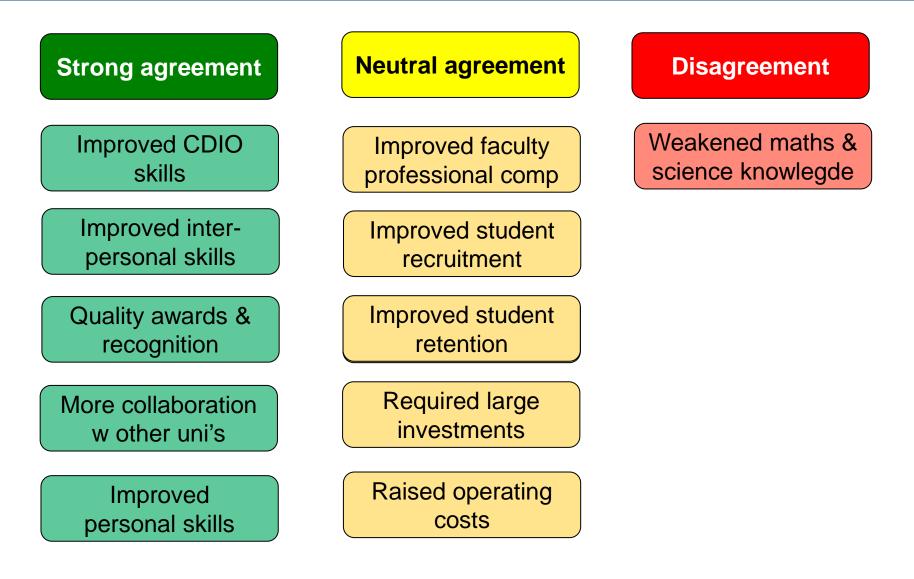
Center of excellence in higher education 2008, National Agency of higher education

HÖGSKOLEVERKET



EFFECTS OF CDIO IMPLEMENTATION ON EDUCATIONAL QUALITY?

MOTIVES FOR ADAPTING CDIO



Percentage Choosing Reason

Malmqvist, Hugo & Kjellberg, 2015

EFFECTS (SELECTED)

APPLYING CDIO TO PREPARE FOR ACCREDITATION REVIEW

 The ABET, EUR-ACE, ... accreditation standards/criteria are "WHATS", ie they do not say how a particular criteria should be addressed

 The CDIO standards are "HOWS" which address about ³/₄ of the ABET or EUR-ACE requirements

TABLE 3.3 THE CDIO SYLLABUS CORRELATED WITH ABET'S EVALUATIVE CRITERION 3

	ABET's Evaluative Criterion 3				;	_					
CDIO Syllabus		b	с	d	е	f	g	h	i	j	k
1.1 Knowledge of Underlying Mathematics, Science											
1.2 Core Engineering Fundamental Knowledge											Г
1.3 Adv. Engr. Fund. Knowledge, Methods, Tools											
2.1 Analytical Reasoning and Problem Solving											
2.2 Exper. Investigation and Knowledge Discovery											
2.3 System Thinking											
2.4 Attitudes, Thought, and Learning											\square
2.5 Ethics, Equity, and Other Responsibilities											
3.1 Teamwork											\square
3.2 Communications											\square
3.3 Communication in Foreign Languages											\square
4.1 External, Societal, and Environmental Context											
4.2 Enterprise and Business Context											
4.3 Conceiving, Systems Engr., and Management											Γ
4.4 Designing											\square
4.5 Implementing											Γ
4.6 Operating											
				ood							

ABET Criteria	Elements	CDIO standard		
4. Continuous improvement	Documented processes that assess and evaluate that intended student outcomes are attained.	11, 12		
	Systematic use of results from evaluation processes to improve program			
	Use of other data to improve programme			

CDIO APPLICATION TO PREPARE FOR ACCREDITATION (EXAMPLES)

Country	University	Discipline	Year	Agency
USA	US Naval Academy	Aerospace		ABET
	MIT	Aerospace		ABET
Australia	Uni Sydney	Electrical	2009	Engineers Australia
Portugal	ISEP	Informatics	2012	EUR-ACE
Singapore	Singapore Polytechnic	Chemical	2012	IChemE
	Nanyang Polytechnic	Aerospace	2013	ABET
Sweden	Chalmers UT	All	2013	HSV
Vietnam	Duy Tan Univ	Software	2013	ABET (planned)

TO SUMMARIZE:

CDIO aims to educate students who are able to:

- Master a deeper working knowledge of the technical fundamentals
- Lead in the creation and operation of new products, processes, and systems
- Understand the importance and strategic impact of research and technological development on society
- To learn more, visit <u>www.cdio.org</u> or read Rethinking Engineering Education: The CDIO Approach, 2nd ed by Crawley, Malmqvist, Östlund, Brodeur & Edström, 2014

Edward F. Crawley · Johan Malmqvist Sören Östlund · Doris R. Brodeur Kristina Edström

Rethinking Engineering Education

The CDIO Approach Second Edition

Thank you for listening!

Any questions or comments?